

Updates on recon impact assessments

2022 TCORF

Jason Sippel – NOAA AOML

Contributions from Sarah Ditchek (AOML/CIMAS) & Xingren Wu (EMC/IMSG)

Outline

 Dropsonde impact assessment funded by 2018 Hurricane Supplemental

 G-IV Inner Circumnav Assessment funded by 2018 Hurricane Supplemental

HDOB/sonde impact assessment for GFSv16 upgrade

Dropsonde impact: Outline

- Basin-scale H220 (e.g., version of HWRF where storms run in regional domain)
- Active periods of 2017-2020
- Compare direct (cycles with recon) vs indirect (cycles without recon) impacts
- Only late model assessed
- Consistency assessed across multiple statistical metrics (mean absolute error, median error, FSP)

Dropsonde impact: Track

Dropsonde impact: Vmax

INDIRECT

Dropsonde impact: Pmin

Dropsonde impact: R34

Consistent improvement

Consistent degradation

Dropsonde impact: R50

Consistent improvement

Consistent degradation

Dropsonde impact: R64

Dropsonde impact: Summary

Sampling with dropsondes:

- Directly and consistently improves track, SLP, and storm structure
- Reduces number of large Vmax MAE outliers, but generally does not improve median Vmax error or FSP
- Indirectly and consistently improves intensity and structure at later lead times

R64 degrades if you don't have enough sondes within/near R64

G-IV Inner Circumnav

- Basin-scale H220 (e.g., version of HWRF where storms run in regional domain)
- Removed inner-circ dropsonde data in Florence, Michael, Dorian, Laura, Marco
- Assessed impact on all storms/cycles with recon
- Only late model assessed

G-IV Inner Circumnav

- Mostly positive track impacts seen from Day 1-4
- Consistent improvements up to 5%
- Intensity impact is neutral

GFS recon impact: Outline

GFS16 pre-implementation trials

- HDOB u/v/T added
- Sonde rejection region changed from 111 km for ALL TC to 55 km for ONLY hurricanes (many more sondes make it in)
- Still no consideration of dropsonde drift

Periods from 2018-2020 considered

Only direct impacts assessed

GFS recon impact: Dorian example

GFS recon impact: Direct (MAE)

Significant track improvement through D4+ in both early and late models

Improved intensity in early model

GFS recon impact: Direct (median)

Very large track improvement D5-7 not seen in MAE (smaller sample, outliers)

More substantial intensity improvement than with MAE

GFS recon impact: Summary

- Quite large track impacts from added HDOB/drops in GFS
- Track MAE improves through D5, median suggests large D6-7 improvement as well
- Smaller intensity improvements
- Overall, GFS performs FAR better when recon present (below)

BONUS SLIDES

GFS recon impact: Indirect (late)

Some improvement observed in non-recon storms, probably due to outliers

No meaningful impact on intensity

Dropsonde impact: Distribution

Dropsonde impact: Recon Storm list

2017	2018	2019	2020
Harvey	Florence	Dorian	Gonzalo
Irma	Gordon	Erin	Hanna
Jose	Isaac	Fernand	Isaias
Katia	Kirk	Humberto	Laura
Maria	Michael	Jerry	Marco
		Karen	Paulette
		Lorenzo	Sally
			Teddy
			Vicky
			Beta

GFS recon impact: Storm list

2018

Florence

Gordon

Helene

Isaac

Joyce

2019

Dorian

Erin

Fernand

Gabrielle

Humberto

Imelda

Jerry

Karen

Lorenzo

2020

Cristobal

Gonzalo

Hanna

Isaias

Ten